Constituents of Annona coriacea. The Structure of a New Diterpenoid

By Patrizia Mussini, Fulvia Orsini, and Francesca Pelizzoni,* Istituto di Chimica Organica dell’Università degli Studi, Centro per lo Studio delle Sostanze Organiche Naturali del C.N.R., via Saldini 50, 20133, Milano, Italy
Giorgio Ferrari, Simes S.p.A., Lab. Ricerche Chimiche, via Bellerio 41, 20161, Milano, Italy
A new diterpenoid, 3,17-epoxy-3 α-hydroxy-13-hydroxyacetyl-13-methylpodocarp-7-en-16,6 β-olactone (1), has been isolated from Annona coriacea; the structural assignment is based on chemical and spectral evidence and is confirmed by conversion of the diterpenoid (1) into (-)-13,13-dimethylpodocarp-7-ene. This correlation indicates the absolute stereochemistry of (I) except for the configuration at $\mathrm{C}-13$ which remains undefined.

We have previously described ${ }^{1}$ two new diterpenoids with a clerodane skeleton isolated from the acetone extract of bulbs of Annona coriacea. In an extension of this work we have examined a third new diterpenoid, $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6}$, m.p. $261-263^{\circ},[\alpha]_{\mathrm{D}}-174^{\circ}$, to which the structure (1) can be assigned. ${ }^{2}$

The presence of an α-ketol group in the side chain of (1) was suggested by a singlet at $\delta 4 \cdot 75(2 \mathrm{H})$ in the n.m.r. spectrum ascribable to the hydroxymethyl group adjacent to the carbonyl group. This signal was moved downfield to $\delta 5 \cdot 12$ on formation of the acetate (2). Confirmatory evidence for the presence of a $\mathrm{CO} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}$ group was obtained from oxidation of (1) with periodic acid which gave the nor-acid (3). A prominent peak at $m / e 303\left(\mathrm{M}-\mathrm{CO} \cdot \mathrm{CH}_{2} \mathrm{OH}\right)$, in the mass spectrum of (1), agrees with the presence of an α-ketol group in the side chain.
A tertiary hydroxy-group is also present in (1), and a diacetate (4) was obtained on refluxing (1) with acetic anhydride and anhydrous sodium acetate: its n.m.r. spectrum differs from that of monoacetate (2)

[^0] 1972, 10, 3267.
only in the presence of another tertiary methyl signal as a singlet at $\delta 2.0$; the i.r. spectrum of (4) exhibits carbonyl bands at 1775,1750 , and $1730 \mathrm{~cm}^{-1}$.

(1) $\mathrm{R}^{1}=\mathrm{CO} \cdot \mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{2}=\mathrm{H}$
(2) $\mathrm{R}^{1}=\mathrm{CO} \cdot \mathrm{CH}_{2} \mathrm{OAc}, \mathrm{R}^{2}=\mathrm{H}$
(3) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}^{2}=\mathrm{H}$
(4) $\mathrm{R}^{1}=\mathrm{CO}^{2} \mathrm{CH}_{2} \mathrm{OAc}, \mathrm{R}^{2}=\mathrm{Ac}$
(5) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$
(6) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ms}$

The n.m.r. spectrum of the acid (3) is of particular interest: \dagger the chemical shifts and the various couplings (verified by double resonance experiments) indicate the presence of the part-structure (3a) in (3). The proton at C-7 appears at $\delta 5 \cdot 72$, as a broad doublet coupled (J
${ }^{2}$ F. Pelizzoni, presented in part at the VIIIth International Symposium on the Chemistry of Natural Products, New Delhi, February 1972.

5 Hz) with the proton at C-6. The latter proton is also coupled with the 5α-proton ($J 6.5 \mathrm{~Hz}$) and thus gives rise to a doublet of doublets centred at $\delta 4.95$. In addition to the coupling with the proton at C-6, the

(3a)
$5 \alpha-\mathrm{H}$ shows a pronounced long range coupling (${ }^{4} J$ 2.2 Hz) with one of the $\mathrm{C}-17$ methylene protons and thus it forms, at $\delta 2 \cdot 21$, a doublet of doublets. The C-17 methylene protons give rise to a pair of doublets centred at $\delta 3.56$ and $4.04\left(J_{\text {gem }} 9 \mathrm{~Hz}\right)$; the upfield doublet is further split by the long range coupling with $5 \alpha-\mathrm{H}$. The pair of doublets centred at $\delta 2 \cdot 23$ (partly overlapped) and at $\delta 2 \cdot 50$ can be attributed to the two nonequivalent protons at C-14 ($J_{\text {gem }} 12.5 \mathrm{~Hz}$). The doublet at $\delta 2.50$ is broadened and exhibits unresolved small couplings with both proton at C-6 and C-7 and with the methyl protons at C-13, which form a broad singlet at $\delta 1.05$.

In view of the presence of the above fragment (3a) as well as the α-ketol chain and a second tertiary methyl group (sharp singlet at $\delta 1.39$) the pimarane (or isopimarane) ${ }^{3}$ skeleton of the diterpenoid (1) seems acceptable. The tricarbocyclic structure was confirmed by dehydrogenation with selenium of the methyl ester (5) which gave a mixture from which 1,7-dimethylphenanthrene was isolated.

Important stereochemical information can be obtained from the n.m.r. spectrum of (3), in particular, from the pronounced long-range single path coupling, ${ }^{4} J_{5,17} 2 \cdot 2 \mathrm{~Hz}$; the strict requirement of a W-conformation for the intervening bonds is well realised in the proposed stereochemical arrangement of the A and B ring disregarding the centre C-9. The reason for locating the hemiacetal group at $\mathrm{C}-3$ is discussed below. Furthermore the coupling constant $J_{5,6}$ corresponds well to the data reported ${ }^{4}$ for the γ-lactone formed between C-4 and C-6 (as opposed to C-10 and C-6) in a 1,3 -diaxial arrangement. The value of $J_{6.7}$ supports the quasi-equatorial nature of the proton attached at C-7. ${ }^{4}$

The configuration of C-13 cannot be simply derived from the n.m.r. spectrum of (3). The observed longrange couplings ${ }^{4} J_{14,18} \neq 0$ and ${ }^{4} J_{14^{\prime}, 18}=0$ indicate a more suitable coupling path for the low-field C(14)proton with the protons at $\mathrm{C}(\mathbf{1 8})$ and suggested a quasi-anti-periplanar conformation of $\mathrm{C}(14)-\mathrm{H}$ and $\mathrm{C}(13)-\mathrm{CH}_{3}$ bonds. This leads further to the assumption of a quasiaxial conformation of $\mathrm{C}(14)-\mathrm{H}$ bond which seems to be

[^1]in agreement with the lack of $\sigma-\pi$-enhancement of the geminal coupling ${ }^{2} J_{14,11^{\prime}} 12.5 \mathrm{~Hz}$, as well as with the finding of detectable allylic and homoallylic couplings even between $\mathrm{H}(14)$ and $\mathrm{H}(6)$ and $\mathrm{H}(7)$. However, these couplings are not well pronounced which may presumably be explained by the presence of an electronegative substituent at C-6. This assignment of the allylic C(14)-protons at lower field, is in contradiction to the assignment which can be made on the basis of the anisotropy of the double bond and which suggests that the axial-proton signal is at the higher field. The agreement between both assignments may be achieved by assuming that the sign of the internal shift of the $\mathrm{C}(\mathbf{1 4)}$-protons is determined by shielding effects of the $\mathrm{CO} \cdot \mathrm{R}$ group at $\mathrm{C}-13$. This leads to a quasi-syn-periplanar position of the $\mathrm{CO} \cdot \mathrm{R}$ and $\mathrm{H}(\mathbf{1 4)}$ in accordance with the quasi-anti-periplanar position of $\mathrm{H}(14)$ and $\mathrm{H}(18)$ previously assigned on the basis of the longrange couplings. Thus the final assignment of the configuration at $\mathrm{C}-13$ depends on the determination of the conformation of the c-ring.

In agreement with the location of the tertiary hydroxygroup on the bridgehead carbon atom, the ester (5) was readily converted into the mesylate (6) which was unchanged even after prolonged reflux in collidine. The n.m.r. spectrum of the mesylate (6) differs from that of the ester (5) only in the presence of the methyl group on a sulphur atom at $\delta 3 \cdot 18$.
The formation of the diols (7) and (8) respectively, on reduction with sodium borohydride of the nor-acid (3) and its methyl ester (5) strongly suggests the presence

(7) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}^{2}=\mathrm{H}, \beta-\mathrm{OH}, \mathrm{R}^{3}=\beta-\mathrm{OH}$
(8) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \beta-\mathrm{OH}, \mathrm{R}^{3}=\beta-\mathrm{OH}$
(9) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \beta-\mathrm{OH}, \mathrm{R}^{3}=\beta-\mathrm{OAc}$
(10) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \beta-\mathrm{OAc}, \mathrm{R}^{3}=\beta-\mathrm{OAc}$
(11) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{O}, \mathrm{R}^{3}=\beta-\mathrm{OAc}$
(13) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{H}, \mathrm{R}^{3}=\mathrm{H}$
(14) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{H}, \mathrm{R}^{3}=\mathrm{H}$
(23) $\mathrm{R}^{1}=\mathrm{CHO}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{H}, \mathrm{R}^{3}=\mathrm{H}$
of a hemiacetal group at C-3 and agrees with the 1,3 -diaxial arrangement of the hydroxymethyl group at C-10 with the lactonic carbonyl group as suggested by the n.m.r. spectrum of the nor-acid (3), discussed above. The reduction of the hemiacetal group occurs together with the transformation of the γ-lactone into the more stable δ-lactone function and consequently the two resulting secondary hydroxy-groups were located at $\mathrm{C}-6$ and at $\mathrm{C}-3$. The protons attached to $\mathrm{C}-6$ and C-3 give rise, after exchange with $\mathrm{D}_{2} \mathrm{O}$, to triplets at $4.52(J 5 \mathrm{~Hz})$ and $3.8(J 8 \mathrm{~Hz})$. The former proton is coupled with the protons at $\mathrm{C}-5$ and $\mathrm{C}-7$ while the latter
${ }^{4}$ G. A. Ellestad, R. H. Evans, jun., and M. P. Kunstmann, J. Amer. Chem. Soc., 1969, 91, 2134.
does not exhibit any coupling to any proton whose signal appears at lower field than $\delta 3$. On acetylation, ester (8) yields the monoacetate (9) and the diacetate (10). In the n.m.r. spectrum of (9) the resonance due to the proton at C-3 moved downfield to $\delta 5 \cdot 10$, and in (10) the resonances due to the protons at C-3 and C-6 moved downfield to $\delta 5 \cdot 06$ and $5 \cdot 53$.

The β-configuration of the hydroxy-group at C-3 follows from analogy with the reduction of methyl lantanolate with sodium borohydride ${ }^{5}$ which gave as major product (90%) the $3 \beta-\mathrm{OH}$ epimer. On the other hand, as ring a is conformationally mobile we cannot exclude the α-configuration for the 3 -hydroxy-group on the basis of the coupling constants of the signal due to the proton at C-3. The α-configuration could be explained by the attack of the hydride ion from the β-face of the molecule, if the BH_{4}^{-}ion is co-ordinated to the ethereal oxygen atom.

The presence of a free hydroxy-function at C-6 in the monoacetate (9) was confirmed by treatment with Jones reagent yielding a conjugated ketone (11), $\lambda_{\text {max }}$ $240 \mathrm{~nm}(\varepsilon 10,311),{ }^{6} \nu_{\text {max }} 1740,1680$, and $1650 \mathrm{~cm}^{-1} ; 7$ the n.m.r. spectrum showed two singlets at $\delta 5.96$ and 3.04 due to the olefinic proton and to the proton attached at C-5. The diacetate (10) as well as the nor-ester (5) were unaffected by Jones reagent.

The relative positions of the hemiacetal and the lactonic carbonyl group were also confirmed by the retro-aldol rupture of the $\mathrm{C}_{3}-\mathrm{C}_{4}$ bond caused by alkaline treatment of the nor-ester (5); after acidification and esterification with diazomethane we obtained the com-

(12)
pound (12) which is isomeric with the starting material. The most important feature of the isomerised product is the absence of hydroxylic functions ($v_{\text {max. }} 1765$ and $1730 \mathrm{~cm}^{-1}$) and the transformation of a tertiary methyl group into a secondary one [doublet at $\delta 1.35(3 \mathrm{H})$ ($J 7 \mathrm{~Hz}$)].

By treatment with ethanedithiol and boron trifluorideether followed by desulphurisation with Raney nickel, the nor-ester (5) yielded the δ-lactone (13). The reduction of the keto group at C-3 was accompanied with the $\gamma \longrightarrow \delta$ rearrangement of the lactone system and with the reductive elimination of the allylic hydroxygroup at C-6. ${ }^{8}$ The i.r. spectrum of (13) does not exhibit any absorption which could be ascribed to the hydroxy-groups and shows the band due to ester and

[^2]lactone at $1725 \mathrm{~cm}^{-1}$. The n.m.r. spectrum presents the olefinic proton resonance as a multiplet at $\delta 5 \cdot 26$, shifted upfield in comparison with the derivatives with the oxygen function at C-6. Saponification of the ester (13) yielded the acid (14), whose i.r. spectrum contains an acidic band at $1705 \mathrm{~cm}^{-1}$ in chloroform, moved to 1630 and $1380 \mathrm{~cm}^{-1}$ (as carboxylate ion) after addition of a few drops of diethylamine; the absorption of the δ-lactone is at $1725 \mathrm{~cm}^{-1}$, unaffected by diethylamine.
The functional groups present in the compound (13) were further confirmed by reduction of (13) with diisobutyl(hydrido)aluminium which gave a mixture of the two epimeric aldehydes (15) and (16) (ratio 7:3) ($v_{\text {max }} 3600,3400,2715$, and $1725 \mathrm{~cm}^{-1}$). In the n.m.r. spectrum both epimers show the aldehydic proton

(15) and (16) $\mathrm{R}^{1}=\mathrm{CHO}, \mathrm{R}^{2}=\mathrm{OH}$ or $\mathrm{H}, \mathrm{R}^{3}=\mathrm{H}$ or OH
(17) and (18) $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{2}=\mathrm{OH}$ or $\mathrm{H}, \mathrm{R}^{3}=\mathrm{H}$ or OH
(26) $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
(27) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
as a singlet at $\delta \mathbf{9 . 4 5}$; the $\mathrm{C}-16$ proton resonance is at $\delta 5.0$ as singlet in the more abundant epimer and at $\delta 4.8$ as singlet in the less abundant one. In this reaction the two epimeric alcohols (17) and (18) were formed as by-products ($v_{\text {max }} 3640,3500$, and 3400 $\left.\mathrm{cm}^{-1}\right) ; \delta 3 \cdot 3\left[2 \mathrm{H}, \mathrm{C}(13)-\mathrm{CH}_{2} \mathrm{OH}\right]$.

Reduction of the ester (13) with sodium borohydride gave the triol (19) ($v_{\text {max }} 3300 \mathrm{~cm}^{-1}$); in addition to the singlet at $\delta 3.5(2 \mathrm{H})$ due to the $\mathrm{CH}_{2} \mathrm{OH}$ protons at $\mathrm{C}-13$, the n.m.r. spectrum of the triol (19) contained two AB quartets [$\delta 3.87$ and $4.07(J 10 \mathrm{~Hz}), \delta 3.7$ and $4.18(J$ $11 \mathrm{~Hz})]$ arising from the hydroxymethyl groups axially oriented at $\mathrm{C}-4$ and at $\mathrm{C}-10$. In the corresponding triacetate $(20)\left(v_{\text {max }} 1730 \mathrm{~cm}^{-1}\right)$, the $\mathrm{C}(13)-\mathrm{CH}_{2} \mathrm{OAc}$, $\mathrm{C}-16$ and C-17 protons moved downfield by $c a .0 .4$ p.p.m.

(19) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{OH}$
(20) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{OAc}$
(21) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}$
(22) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{CHO}$
(25) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{OMs}$

The proposed structure (1) was confirmed in all respects but the configuration at $\mathrm{C}-13$, by transformation

[^3]of the triol (19) into (-)-13,13-dimethylpodocarp-7-ene (21). ${ }^{9}$

In a first attempt to remove the hydroxy-groups, the triol (19) was oxidised according to Fetizon in order to obtain the trialdehyde (22) which could be a suitable compound for a subsequent reduction to the hydrocarbon (21). Unfortunately, but not unexpectedly, a mixture of the lactones (23) and (24) was obtained instead of the desired compound. This result could be perhaps explained by an intramolecular Cannizzaro condensation involving the axially oriented aldehyde groups at C-10 and at C-4 which are first formed. The lactones (23) and (24) with sodium borohydride were smoothly reconverted into the starting triol (19).

(24)

Similarly, an attempt to prepare the liydrocarbon (21) on LiAlH_{4} reduction of the triol-trimesylate (25) was unsuccessful: only the two ethers (26) and (27) were obtained.

The mesylate (25) was eventually transformed into the hydrocarbon (21) by taking advantage of the easy formation of a cyclic structure between the positions 16 and 17 . On treatment with sodium sulphide in dimethyl sulphoxide, (25) gave the compound (28) which without isolation was desulphurised to (21) by refluxing with Raney nickel. The n.m.r. spectrum of the hydrocarbon (21) in $\left[{ }^{2} \mathrm{H}_{6}\right]$ benzene showed five tertiary methyl resonances and a multiplet centred at $\delta 5 \cdot 36$ due to the C-7 olefinic proton. ${ }^{10}$ The position of the double bond can be determined from the mass spectrum: the base peak, at $m / e 136$, corresponds to the fragment formed by the easy retro-Diels-Alder fission as shown in Scheme 1. The rotatory dispersion curve of (21) is a plain negative curve with $[\Phi]_{250}$

(28)
-2600. ${ }^{11}$ The data reported above and the i.r. spectrum allow us to assign to the hydrocarbon (21) the structure of $(-)$-13,13-dimethylpodocarp-7-ene.

In order to gain definitive proof of its structure the

[^4]hydrocarbon (21) was converted by acidic treatment into the $8(9)$-isomer which was identified as $(+)-13,13-$ dimethylpodocarp-8(9)-ene by direct comparison with

Scheme 1
an authentic sample. The latter one was available by acidic treatment of (-)-13,13-dimethylpodocarp-8(14)ene ${ }^{12}$ obtained from (- -)-isopimara-8(14), 15 -diene by the same sequence used to prepare 13,13 -dimethylpodo-carp-7-ene from isopimara-7,15-diene ${ }^{13}$ (see Scheme 2).
(+)-13,13-Dimethylpodocarp-8(9)-ene, which we have obtained from the hydrocarbon (21) and from (-)-iso-pimara-8(14),15-diene, had $[\alpha]_{D}+44^{\circ}$, and its n.m.r. spectrum does not show any olefinic proton and the

Scheme 2 Reagents: i, OsO_{4}, then HIO_{4} in dioxan; ii, $\mathrm{NH}_{2}-$ CONHNH 2 , then KOH in diethylene glycol, $200^{\circ}, \mathrm{N}_{2}$; iii, dry HCl in CHCl_{3}
resonances due to the tertiary methyls are at $\delta 0.89$, $0.92(6 \mathrm{H}), 0.95$, and 1.02 . The position of the double bond is confirmed by the mass spectrum: the base peak is at $m / e 245\left(M^{+}-\mathrm{CH}_{3}\right)$ and other significant fragments are at $m / e 260\left(M^{+}\right), 175\left(M^{+}-85\right), 163\left(M^{+}-\right.$ $97), 149\left(M^{+}-111\right)$, and 69 in agreement with the fragmentation reported ${ }^{14}$ for pimara-8(9)-diene.

A study of the configuration of $\mathrm{C}-13$ is in progress.

EXPERIMENTAL

For general experimental details, see our previous paper. ${ }^{1}$
Extraction.-The diterpenoid 3,17-epoxy-3 $\mathbf{\alpha - h y d r o x y - 1 3 - ~}$ hydroxyacetyl-13-methylpodocarp-7-en-16,6 3 -olactone was isolated by filtration from the concentrated acetone
${ }^{12}$ A. Diara, C. Asselineau, and E. Lederer, Bull. Soc. chim. France, 1960, 2171.
${ }_{13}$ R. E. Ireland and J. Newbould, J. Org. Chem., 1963, 28, 23.
${ }^{14}$ G. R. Waller, ' Biochemical Applications of Mass Spectrometry,' Wiley-Interscience, New York, 1972, p. 367.
extract of dry bulbs of Annona coriacea and was recrystallised from acetone as prisms, m.p. $261-263^{\circ},[\alpha]_{\mathrm{D}}$ -174° (c 1 in pyridine), $v_{\text {max }}$ (Nujol) 3400, 1740, 1700, and $1660 \mathrm{~cm}^{-1}, \delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 5.72$ [d, $\left.J_{6.7} 5 \mathrm{~Hz}, \mathrm{C}(7)-\mathrm{H}\right], 4.98$ [dd, $J_{5.6} 5 \cdot 5$ and $\left.J_{6.7} 5 \mathrm{~Hz} \mathrm{C}(6)-\mathrm{H}\right], 4.75\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.22$ and 3.62 (ABq, $J_{\mathrm{AB}} 10 \mathrm{~Hz}$, the upfield part of the quartet had ${ }^{4} J 2.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), and 1.0 and 1.54 (tertiary methyls) (Found: $\mathrm{C}, 66 \cdot 1$; $\mathrm{H}, 7 \cdot 15 . \quad \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6}$ requires $\mathrm{C}, 66 \cdot 3$; $\mathrm{H}, 7 \cdot 25 \%), \lambda_{\max }(\mathrm{MeOH}) 205 \mathrm{~nm}(\varepsilon 5000), m / e 362\left(M^{+}\right.$, 28%), 344 (41), 303 (69), 285 (100), 271 (57), 257 (73), and 211 (70).

Acetylation of the Diterpenoid (1).-The diterpenoid (1) (150 mg) was acetylated under normal conditions. The crude product was purified by chromatography on silica gel using gradually increasing quantities of methanol in chloroform to afford 13-acetoxyacetyl-3,17-epoxy- 3α-hydroxy-13-methylpodocarp-7-en-16,63-olactone (2), m.p. 205° (from ethyl acetate-light petroleum), $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3500,1750$, 1730 , and $1665 \mathrm{~cm}^{-1}, \delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 5.75$ [d, $\left.J_{6,7} 5 \mathrm{~Hz}, \mathrm{C}(7)-\mathrm{H}\right]$, $5 \cdot 12$ (s, $\mathrm{CH}_{2} \mathrm{OAc}$), $5 \cdot 0$ [dd, $\mathrm{C}(6)^{-\mathrm{H}}$, partially superimposed on the previous signal], 4.25 and 3.65 (ABq, $J_{A B} 10 \mathrm{~Hz}$, the upfield part of the quartet had ${ }^{4} J 2 \cdot 2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 2.1 (AcO), and 1.55 and 1.10 (tertiary methyls) (Found: $\mathrm{C}, 65 \cdot 5 ; \mathrm{H}, 7 \cdot 1 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{7}$ requires $\mathrm{C}, 65 \cdot 35 ; \mathrm{H}, 7 \cdot 0 \%$), $m / e 404$ ($M^{+}, 13 \%$), 386 (31), 344 (16), 303 (73), 285 (100), 271 (37), 257 (66), and 211 (57%).

The monoacetate (2) on refluxing with acetic anhydride and anhydrous sodium acetate for 5 h , and crystallisation of the crude product from ethyl acetate-light petroleum yielded the diacetate (4) (90 mg), m.p. $233-235^{\circ} \nu_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right) 1775,1750,1730$, and $1675 \mathrm{~cm}^{-1}, \delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 5 \cdot 68$ $\left[\mathrm{d}, J_{6.7} 5 \mathrm{~Hz}, \mathrm{C}(7)-\mathrm{H}\right], 5 \cdot 06\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{OAc}\right), 4 \cdot 86\left[\mathrm{t}, J_{5,6}=\right.$ $\left.J_{6,7} 5 \mathrm{~Hz}, \mathrm{C}(6)-\mathrm{H}\right], 3.67$ and $4 \cdot 15$ (ABq, $J_{\mathrm{AB}} 10 \mathrm{~Hz}$, the upfield part of the quartet showed ${ }^{4} J 2.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 2.08 and $2.0(2 \times \mathrm{AcO})$, and 1.05 and 1.51 (tertiary methyls) (Found: C, 64.45; H, 6.9. $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{8}$ requires $\mathrm{C}, 64.55$; H, 6.75\%), m/e 446 ($M^{+}, 3 \%$), 404 (23), 386 (100), 303 (32), 285 (98), 271 (16), 257 (30), and 211 (28).

Oxidation of Diterpenoid (1).-The compound (1) (6 g) dissolved in purified dioxan ($2 \cdot 6 \mathrm{l}$) and $0 \cdot 1 \mathrm{~m}$-periodic acid (200 ml) was left at room temperature for 48 h . The solution was evaporated in vacuo, diluted with water, and extracted several times with ethyl acetate; the crude product was crystallised from acetone to yield 13 -carboxy-3,17-epoxy-3 α-hydroxy-13-methylpodocarp-7-en-16,63-olac-
tone (3) ($4 \cdot 25 \mathrm{~g}$), m.p. $265-266^{\circ},[\alpha]_{\mathrm{D}}-158^{\circ}$ (c 1 in pyridine), $\nu_{\text {max. }}$ (Nujol) $3500,3100,1730,1710$, and $1660 \mathrm{~cm}^{-1}$.
The acid (3) (97 mg) afforded with diazomethane 3,17 -epoxy$3 \alpha-h y d r o x y-13-m e t h o x y c a r b o n y l-13-m e t h y l p o d o c a r p-7-e n-16,-$ 6β-olactone (5) which crystallised from ethyl acetate-light petroleum as needles (84 mg), m.p. $245-247^{\circ}, \nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ $3500,1760,1730$, and $1670 \mathrm{~cm}^{-1}, \delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right), 5 \cdot 72$ [d, $J 5 \mathrm{~Hz}$, $\mathrm{C}(7)-\mathrm{H}], 4.98$ [dd, $\left.J_{6,7} 5, J_{5,6} 6 \mathrm{~Hz}, \mathrm{C}(6)-\mathrm{H}\right], 4.22$ and 3.62 (ABq, $J_{\mathrm{AB}} 10 \mathrm{~Hz}$, the upfield part of the quartet is superimposed to the singlet at $\delta 3.64, \mathrm{CH}_{2} \mathrm{O}$), $3.64\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, and 1.08 and 1.5 (tertiary methyls) (Found: C, 66.2; $\mathrm{H}, 7 \cdot 4 . \quad \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6}$ requires $\mathrm{C}, 66 \cdot 3 ; \mathrm{H}, 7 \cdot 25 \%$), $m / e 362$ ($M^{+}, 21 \%$), 344 (46), 316 (21), 303 (53), 284 (68), 271 (46), 257 (41), 229 (76), and 211 (100).

Dehydrogenation of the Ester (5).-Methyl ester (5) (300 mg) was heated at $300-320^{\circ}$ with selenium (600 mg) for 50 h . Usual work-up was followed by chromatography on alumina. Elution with benzene-hexane ($3: 7$) gave 1,7-dimethylphenanthrene identical with authentic material.

Mesylate of the Ester (5).—The methyl ester (5) (150 mg) was treated with methanesulphonyl chloride (0.5 ml) in dry pyridine (2 ml) at 0° for 66 h . The crude mesylate was purified on silica gel by elution with chloroform; it did not crystallise, although homogeneous by t.l.c. (2% MeOH in $\left.\mathrm{CHCl}_{3}\right)$, $v_{\max }\left(\mathrm{CHCl}_{3}\right) 1770,1725,1675,1360$, and $1150 \mathrm{~cm}^{-1}, m / e 381\left(M^{+}-59\right), 361\left(M^{+}-\mathrm{MeSO}_{2}\right)$, $344\left(M^{+}-\mathrm{MsOH}\right)$, and $79\left(\mathrm{MeSO}_{2}\right)$.

The mesylate was recovered unchanged after refluxing in collidine for 20 h .
Reduction of the Ester (5) and the Acid (3).-The methyl ester (5) (500 mg) in methanol (100 ml) was reduced with NaBH_{4} (500 mg). After stirring for 1 h at room temperature, another 500 mg of NaBH_{4} were added and the mixture was stirred for an additional 24 h . The crude product was chromatographed on silica gel, elution by chloroform and crystallisation from acetone giving $3 \beta, 6 \beta-$ dihydroxy-13-methoxycarbonyl-13-methylpodocarp-7-en-
16,17 -olactone (8) (350 mg), m.p. $167-169^{\circ}$, $v_{\max }$ (Nujol) $3420,3370,1720$, and $1730 \mathrm{~cm}^{-1}$ (shoulder), $\delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 5.85$ $\left[\mathrm{d}, J_{6,7} 5 \mathrm{~Hz}, \mathrm{C}(7)-\mathrm{H}\right], 4.83$ and 4.02 (ABq, $J_{\mathrm{AB}} 10 \mathrm{~Hz}$, the upfield part of the quartet showed ${ }^{4} J .2 \cdot 2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), $4 \cdot 55$ [t after $\mathrm{D}_{2} \mathrm{O}$ exchange, $J_{5,6}=J_{6,7} 5 \mathrm{~Hz}, \mathrm{C}(6)-\mathrm{H}$], $3.66\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.6\left[\mathrm{C}(3)-\mathrm{H}\right.$, obscured by $\left.\mathrm{CO}_{2} \mathrm{Me}\right]$, and 1.98 and 1.18 (tertiary methyls) (Found: C, $65.6 ; \mathrm{H}, 8.0$. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{6}$ requires $\mathrm{C}, 65 \cdot 9 ; \mathrm{H}, 7.75 \%$). Reduction with NaBH_{4} of the acid (3) (143 mg) was carried out under the same condition but in EtOH and gave the 13 -acid (7) (132 mg), almost pure. The n.m.r. spectrum of the acid (7) showed the signal of the proton at C-3 as a triplet at $\delta 3.80$ ($J_{\text {obs. }} 8 \mathrm{~Hz}$). The acid (7) gave with diazomethane the methyl ester (8).

Acetylation of the Ester (8).-The compound (8) (321 mg) was acetylated under the usual conditions. On chromatography over silica gel by elution with increasing quantities of methanol in chloroform the 3β-acetate (9) $(163 \mathrm{mg})$ and the $3 \beta, 6 \beta$-diacetate (10) (35 mg) were obtained. The monoacetate crystallised from acetone as needles, m.p. $199-200^{\circ}$, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3600,3450$, and $1730 \mathrm{~cm}^{-1}$, $\delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 5.78\left[\mathrm{~d}, J_{6.7} 6 \mathrm{~Hz}, \mathrm{C}(7)-\mathrm{H}\right], 5 \cdot 1\left[\mathrm{t}, J_{\text {obs }} 8 \mathrm{~Hz}\right.$, $\mathrm{C}(3)-\mathrm{H}], 4 \cdot 48$ [t after $\mathrm{D}_{2} \mathrm{O}$ exchange, $J_{5,6}=J_{6,7} 6 \mathrm{~Hz}$, $\mathrm{C}(6)-\mathrm{H}], 4.77$ and $4.01\left(\mathrm{ABq}, J_{\mathrm{AB}} 10 \mathrm{~Hz}\right.$, the upfield part of the quartet showed $\left.{ }^{4} J 2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 3 \cdot 66\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, 2.06 (s, AcO), and 1.68 and 1.2 (tertiary methyls), m / e 388 ($M^{+}-\mathrm{H}_{2} \mathrm{O}, 26 \%$), 328 (20), 298 (100), and 211 (48).

The diacetate (10) showed $v_{\max }\left(\mathrm{CHCl}_{3}\right) 1730 \mathrm{~cm}^{-1}, \delta$ $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 5 \cdot 8\left[\mathrm{~d}, J_{6,7} 6 \mathrm{~Hz}, \mathrm{C}(7)-\mathrm{H}\right], 5 \cdot 53\left[\mathrm{t}, J_{6.7}=J_{5.6}\right.$ $6 \mathrm{~Hz}, \mathrm{C}(6)-\mathrm{H}], 5.06\left[\mathrm{t}, J_{\text {obs }} 8 \mathrm{~Hz}, \mathrm{C}(3)-\mathrm{H}\right]$, and 4.47 and 4.09 (ABq, $J_{A B} 10 \mathrm{~Hz}$, the upfield part of the quartet had ${ }^{4} J 2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), $n / e 388\left(M^{+}-\mathrm{AcOH}, 34 \%\right), 328$ (30), 298 (100), and 211 (64).

Oxidation of the Monoacetate (9).-The monoacetate 9) (100 mg) in acetone was treated with Jones reagent (15 drops) at room temperature for 30 min . The crude product was purified on silica gel by elution with increasing quantities of methanol in chloroform and by crystallisation from acetone to afford 3β-acetoxy-13-methoxycarbonyl-13-methyl-6-oxopodocarp-7-en-16,17-olactone (11) (69 mg), m.p. $199^{\circ}, \nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1740,1680$, and $1650 \mathrm{~cm}^{-1}, \lambda_{\text {max. }}(\mathrm{MeOH})$ $240 \mathrm{~nm}(\varepsilon 10,311), \delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 5.96$ (s, olefinic proton), $5.2[\mathrm{~m}, \mathrm{C}(3)-\mathrm{H}], 4.26$ ($\mathrm{ABq}, J_{\mathrm{AB}} 12 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 3.68 (s, $\mathrm{CO}_{2} \mathrm{Me}$) , 3.04 [s, $\left.\mathrm{C}(5)-\mathrm{H}\right], 2.06$ (AcO), and 1.88 and 1.18 (tertiary methyls) (Found: C, 65.2; H, 7.05. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{7}$ requires $\mathrm{C}, 65 \cdot 35 ; \mathrm{H}, 7 \cdot 0 \%)$, m/e $404\left(M^{+}, 12 \%\right), 362$ (75), 344 (38), 289 (100), 271 (50), 254 (62), and 211 (62).

Treatment of Ester (5) with Base.-The ester (5) (360 mg) was stirred in $\mathrm{N}-\mathrm{NaOH}(10 \mathrm{ml})$ under nitrogen at room temperature for 70 h . After acidification the crude acid was isolated and esterified with diazomethane and the ester was subjected to chromatography over silica gel giving 13-methoxycarbonyl-13-methyl-3,4-secopodocarp-7-ene-16,6ß;3,17-diolactone (12) (150 mg), $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ 1765 and $1730 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 5 \cdot 60\left[\mathrm{~d}, J_{6.7} 8 \mathrm{~Hz}, \mathrm{C}(7)-\mathrm{H}\right]$, $5 \cdot 0[\mathrm{~m}, \mathrm{C}(6)-\mathrm{H}], 4 \cdot 40$ and $4 \cdot 12\left(\mathrm{ABq}, J_{\mathrm{AB}} 12 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right)$, $3.67\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}\right), \mathrm{l} \cdot 10$ (s, tertiary methyl), and 1.35 (d, J $7 \mathrm{~Hz}, M e \mathrm{CH}$), $m / e 362$ ($M^{+}, 5 \%$), 344 (10), 316 (5), 303 (100), 257 (58), 229 (52), and 141 (64).

Conversion of the Ester (5) into the δ-Lactone (13).-A solution of the methyl ester (5) (360 mg) in ethanedithiol $(15 \mathrm{ml})$ was treated with 12 drops of boron trifluorideether and left at 0° for 4 days. After chromatography on silica gel to remove unchanged ester (eluant; 0.5% MeOH in CHCl_{3}) the product was desulphurised by refluxing with Raney-Ni in EtOH (40 ml). 13-Methoxy-carbonyl-13-methylpodecarp-7-en-16,17-olactone (13) was separated by chromatography over silica gel using 0.5% MeOH in CHCl_{3} and crystallised from ethyl acetate-light petroleum as needles (250 mg), m.p. $172-174^{\circ}$, $\nu_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right) 1725 \mathrm{~cm}^{-1}, \delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 5.26$ (m, olefinic proton), 4.20 and 3.85 ($\mathrm{ABq}, J_{\mathrm{AB}} 10 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}^{-}$), 3.60 ($\mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), and 1.16 and 1.08 (tertiary methyls) (Found: C, 72.3; $\mathrm{H}, 8.25 . \quad \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 72 \cdot 25 ; \mathrm{H}, 8.5 \%$), $m / e 332$ ($M^{+}, 25 \%$), 302 (11), 274 (100), and 213 (44).

The δ-lactone (13) (30 mg) was refluxed in diethylene glycol (10 ml) with $0 \cdot 1 \mathrm{~N}-\mathrm{NaOH}(5 \mathrm{ml})$ for 3 h . After acidification the acid (14) was extracted with chloroform, $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1725$ and $1705 \mathrm{~cm}^{-1}$ (after treatment of the chloroform solution with a few drops of diethylamine, $\nu_{\text {max }}$ 1725,1630 , and $1380 \mathrm{~cm}^{-1}$).

The acid (14) was esterified with an ethereal solution of diazomethane to give the ester (13).

Reduction of the Lactone (13) with Di-isobutyl(hydrido)-aluminium.-The lactone (13) (50 mg) was treated with di-isobutyl(hydrido)aluminium $(0.5 \mathrm{ml} ; 20 \%$ solution in toluene) in anhydrous toluene (6 ml) at -70° for 1 h under nitrogen. The crude product was subjected to preparative t.l.c. (eluant: $2 \% \mathrm{MeOH}$ in CHCl_{3}) to yield two epimeric aldehydes (15) and (16) (18 mg) and two epimeric alcohols (17) and (18) (14 mg). The mixture of the aldehydes had $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3600,3400,2715$, and $1725 \mathrm{~cm} .^{-1}$ The resonance of the aldehydic proton was at $\delta 9 \cdot 45$, as a singlet, in both the epimers; the resonance of the proton at $\mathrm{C}-16$ was at $\delta 5.0$ in the more abundant epimer and at $\delta 4 \cdot 8$ in the other (br s in CDCl_{3} after $\mathrm{D}_{2} \mathrm{O}$ exchange), $m / e 304\left(M^{+}\right)$.

The mixture of the alcohols [(17) and (18)] had $\nu_{\max }$ $\left(\mathrm{CHCl}_{3}\right) 3640,3500$, and $3400 \mathrm{~cm} .^{-1}$ The resonance of the hydroxymethyl group at $\mathrm{C}-13$ was a singlet at $\delta 3.30$ in both epimers; the resonance of the proton at $\mathrm{C}-16$ was at $\delta 5.0$ in the more abundant epimer and at $\delta 4.78$ in the other (br s in CDCl_{3}, after $\mathrm{D}_{2} \mathrm{O}$ exchange), $m / e 306\left(M^{+}\right.$).

Reduction of the Lactone (13) to the Triol (19).—The lactone (13) (50 mg) was refluxed for 4 h in 50% aqueous ethanol with $\mathrm{NaBH}_{4}(100 \mathrm{mg})$. The product was purified by chromatography on silica gel (eluant: $5 \% \mathrm{MeOH}$ in CHCl_{3}) and crystallised from methanol to yield 13-hydroxy-methyl-13-methylpodocarp-7-ene-16,17-diol (19) (35 mg), m.p. 204-206 ${ }^{\circ}$, $v_{\max .}(\mathrm{KBr}) 3300 \mathrm{~cm}^{-1}, \delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 5.48(\mathrm{~m}$, olefinic proton), 3.87 and $4.07\left(\mathrm{ABq}, J_{\mathrm{AB}} 10 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right)$, 3.70 and 4.18 (ABq, $\left.J_{\mathrm{AB}} 11 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.50\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{OH}\right.$
at C-13), and 1.25 and 1.02 (tertiary methyls) (Found: $\mathrm{C}, 74 \cdot 2 ; \mathrm{H}, 10 \cdot 45 . \quad \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$ requires $\mathrm{C}, \mathbf{7 4 \cdot 0} ; \mathrm{H}, \mathbf{1 0 . 5} \%$), $m / e 290\left(M^{+}-\mathrm{H}_{2} \mathrm{O}\right), 277$ (100), 259 (48), 247 (57), 241 (21), 229 (18), and 213 (9%).

Acetylation of the Triol (19). The triol (19) (10 mg) was acetylated under the usual conditions to give the triacetate (20) purified by preparative t.l.c. (eluant: $2 \% \mathrm{MeOH}$ in $\left.\mathrm{CHCl}_{3}\right), \nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1730 \mathrm{~cm}^{-1}, \delta\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 5.38(\mathrm{~m}$, olefinic proton), 4.39 and 4.09 (ABq, $J_{A B} 10 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OAc}$), 4.59 and $4.09\left(\mathrm{ABq}, J_{\mathrm{AB}} 11 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OAc}\right), 3.86\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{OAc}\right.$ at C-13), $2.0(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{AcO}), 2.03(\mathrm{~s}, \mathrm{AcO})$, and 0.98 and 0.84 (tertiary methyls).

Oxidation of the Triol (19) by Fetizon's Method.-A mixture of the triol (19) (15 mg) and of an excess of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ on Celite in toluene was dried by azeotropic distillation and refluxed for 4 h under nitrogen. P.l.c. of the crude product (eluant: ethyl acetate-light petroleum) separated the lactones (23) and (24). Their i.r. spectra had bands $\left(\mathrm{CHCl}_{3}\right)$ at 2710 and $1720 \mathrm{~cm}^{-1}$. Their n.m.r. spectra $\left(\mathrm{CDCl}_{3}\right)$ showed the resonance of the lactonic methylene as an AB quartet at $\delta 4.25$ and $4.0\left(J_{\mathrm{AB}} 12 \mathrm{~Hz}\right)$ and at $4 \cdot 23$ and $3.89\left(J_{\mathrm{AB}} 11 \mathrm{~Hz}\right)$; the resonance of the aldehydic proton was at $\delta 9.4$ as singlet for both compounds. Mass spectra of both compounds showed a molecular ion at m / e 302 and the base peak at $m / e 274$.

Trimesylate of the Triol (19).-The triol (19) (35 mg) was treated with mesyl chloride (0.5 ml) in dry pyridine (3 ml) at -20° overnight. The crude product was purified on silica gel by elution with $0.5 \% \mathrm{MeOH}$ in chloroform to afford an amorphous sample (30 mg) of the trimesylate (25), $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1340$ and $1170 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right) 5.45(\mathrm{~m}$, olefinic proton), 4.41 and 4.01 ($\mathrm{ABq}, J_{\mathrm{AB}} 10 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OMs}$), $4 \cdot 16 \mathrm{br}$ ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{OMs}$), 3.91 ($\mathrm{s}, \mathrm{CH}_{2} \mathrm{OMs}$ at $\mathrm{C}-13$), $3.0(9 \mathrm{H}, \mathrm{s}$, $3 \times \mathrm{MeS}$), and 1.06 and 0.88 (tertiary methyls), $m / e 350$ $\left(M^{+}-2 \mathrm{MeSO}_{3} \mathrm{H}, 100 \%\right), 337\left(M^{+}-\mathrm{MeSO}_{3} \mathrm{H}-\mathrm{CH}_{2}-\right.$ $\mathrm{OSO}_{2} \mathrm{Me}, 22$), 245 ($M^{+}-3 \mathrm{MeSO}_{3} \mathrm{H}, 28$), 241 ($M^{+}-2$ $\mathrm{MeSO}_{3} \mathrm{H}-\mathrm{CH}_{2} \mathrm{OSO}_{2} \mathrm{Me}, 33$), and 211 (16).
Reduction of the Trimesylate (25).-The trimesylate (25) (15 mg) was refluxed with an excess of LiAlH_{4} in tetrahydrofuran (5 ml) under nitrogen for 10 h . The crude mixture was subjected to preparative t.l.c. (eluant: $1 \% \mathrm{MeOH}$ in CHCl_{3}) to give a trace of the triol (19), the hydroxy-ether (26), and in lower yield the ether (27). The hydroxy-ether (26) had $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3500 \mathrm{~cm}^{-1}$, $m / e 290\left(M^{+}, 68 \%\right), 259(44), 243(22), 229$ (18), and 192 (100). On acetylation the compound (26) gave a monoacetate, $m / e 332$ ($M^{+}, 43 \%$), 301 (20), 272 (47), 259 (100), and 241 (65). The mass spectrum of the ether (27) had $m / e 274\left(M^{+}, 100 \%\right), 259(20), 243(37), 231(45)$, and 213 (18).
(-)-13,13-Dimethylpodocarp-7-ene from Trimesylate (25). -The trimesylate (25) (100 mg) was heated with $\mathrm{Na}_{2} \mathrm{~S}$,$9 \mathrm{H}_{2} \mathrm{O}(150 \mathrm{mg})$ in dimethyl sulphoxide (10 ml) at $60-80^{\circ}$ for 50 h under nitrogen. The solution was diluted with water, and extracted with chloroform. Desulphurisation of the crude sulphide was achieved by refluxing with an excess of Raney-Ni in EtOH for 5 h . Usual work-up followed by chromatography on alumina (activity I, eluant: hexane) afforded the hydrocarbon (21) (10 mg) as an oil. This material contained 90% of a single component (by g.l.c.) and did not crystallise, $\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 5 \cdot 36$ (m, olefinic proton), $1.02,0.93,0.91,0.89$, and 0.85 (tertiary methyls), $m / e 260\left(M^{+}, 20 \%\right), 245$ (30), 136 (100), o.r.d. $[\phi]_{620}-12^{\circ},[\phi]_{589}-34^{\circ},[\phi]_{300}-439^{\circ},[\phi]_{270}-740^{\circ}$, and $[\phi]_{250}-1000^{\circ}\left(c 0 \cdot 1\right.$ in hexane, at $\left.25^{\circ}\right)$.
(+)-13,13-Dimethylpodocarp-8(9)-ene from the Hydrocarbon (21).—Dry hydrogen chloride was passed through an ice-cold solution of hydrocaron (21) (8 mg) in dry chloroform (4 ml) for 4 h . The crude product was purified on alumina (activity I) by elution with hexane to give $(+)$-13,13-dimethylpodocarp-8(9)-ene (4 mg) as an oil. The material contained $c a .90 \%$ of a single component (by g.l.c.). $[\alpha]_{D}+44^{\circ}$ (the small quantity of the material did not allow us to determine the accuracy of this value), $m / e 260\left(M^{+}, 30 \%\right), 245(100), 175$ ($M^{+}-85,42$), 163 ($M^{+}-97,22$), $149\left(M^{+}-111,70\right)$, and 69 (53).

Rearrangement of (-)-13,13-Dimethylpodocarp-8(14)-ene. -Dry hydrogen chloride was passed for 4 h through an ice-cold solution of (-)-13,13-dimethylpodocarp-8(14)-ene $(6 \mathrm{mg})\left\{[\alpha]_{D}-18^{\circ}\left(\right.\right.$ lit., $\left.\left.{ }^{12}-15 \pm 5^{\circ}\right)\right\}$, obtained by WolffKishner reduction of 13β-methylpodocarp-8(14)-ene-13 α -
carbaldehyde semicarbazone [m.p. 226-229 ${ }^{\circ}$ (lit., ${ }^{15} 226-$ $\left.228^{\circ}\right)$]. The crude product was purified on alumina by elution with hexane to give $(+)$-13,13-dimethylpodocarp-$8(9)$-ene as an oil (4 mg) identical with the sample obtained by acidic rearrangement of hydrocarbon (21).

We thank Dr. G. Severini Ricca for n.m.r. spectra, Dr. C. R. Enzell and Dr. T. Salvatori for mass spectra and helpful discussions, Dr. E. L. Ghisalberti for supplying the picrate of 1,7 -dimethylphenanthrene, Dr. R. A. Laidlaw for a generous supply of (-)-isopimara-8(14),15-diene, and Dr. R. E. Ireland for a copy of the i.r. spectrum of 13,13-dimethoxypodocarp-7-ene.
[3/744 Received, 9th April, 1973]
${ }^{15}$ R. E. Ireland and P. W. Schiess, J. Org. Chem., 1963, 28, 6.

[^0]: \dagger We thank Dr. Z. Samek of the Czechoslovak Academy of Science for recording and discussing this spectrum.
 ${ }^{1}$ M. Ferrari, F. Pelizzoni, and G. Ferrari, Phytochemistry,

[^1]: ${ }^{3}$ J. W. Rowe, 'The Common and Systematic Nomenclature of Cyclic Diterpenes,' 2nd edn., Madison, Wisconsin, 1968.

[^2]: 5 A. K. Barua, P. Chakrabarti, S. P. Dutta, D. K. Mukherjee, and B. C. Das, Tetrahedron, 1971, 27, 1141.
 ${ }_{6}$ T. G. Halsall and M. Moyle, J. Chem. Soc., 1960, 1324.

[^3]: 7 L. Mangoni and M. Belardini, Gazzetta, 1962, 92, 983.
 ${ }^{8}$ L. F. Fieser, Ching Yuan, and T. Goto, J. Amer. Chem. Soc.,. 1960, 82, 1996.

[^4]: ${ }^{9}$ R. E. Ireland and J. Newbould, J. Org. Chem., 1962, 27 , 1931.
 ${ }^{10}$ C. R. Enzell and B. R. Thomas, Acta Chem. Scand., 1965, 1875.
 ${ }_{11}$ C. R. Enzell and S. R. Wallis, Tetrahedron Letters, 1966, 243.

